

Measurement of Scapulohumeral Rhythm using a Dynamic Radiographic Technique:

A Validation and Reliability Study

Joanne Y. Zhou, MD¹, Sameer R. Khawaja, BS¹, Jaden Hardrick, BS¹, Hayden Cooke, BS¹, Zaamin B. Hussain, MD, Ed.M.¹, Itaru Kawashima, MD, PhD², Thomas Wright, MD², Michael B. Gottschalk, MD¹, Eric R. Wagner, MD¹

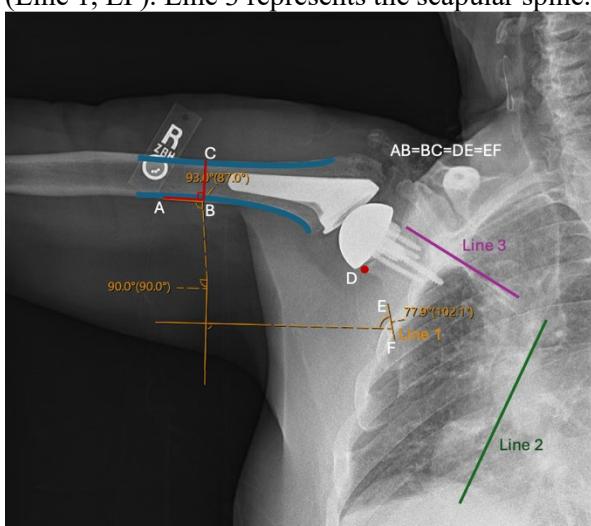
Affiliations:

¹Department of Orthopaedics, Emory University School of Medicine, 21 Ortho Lane, Atlanta, GA 30329

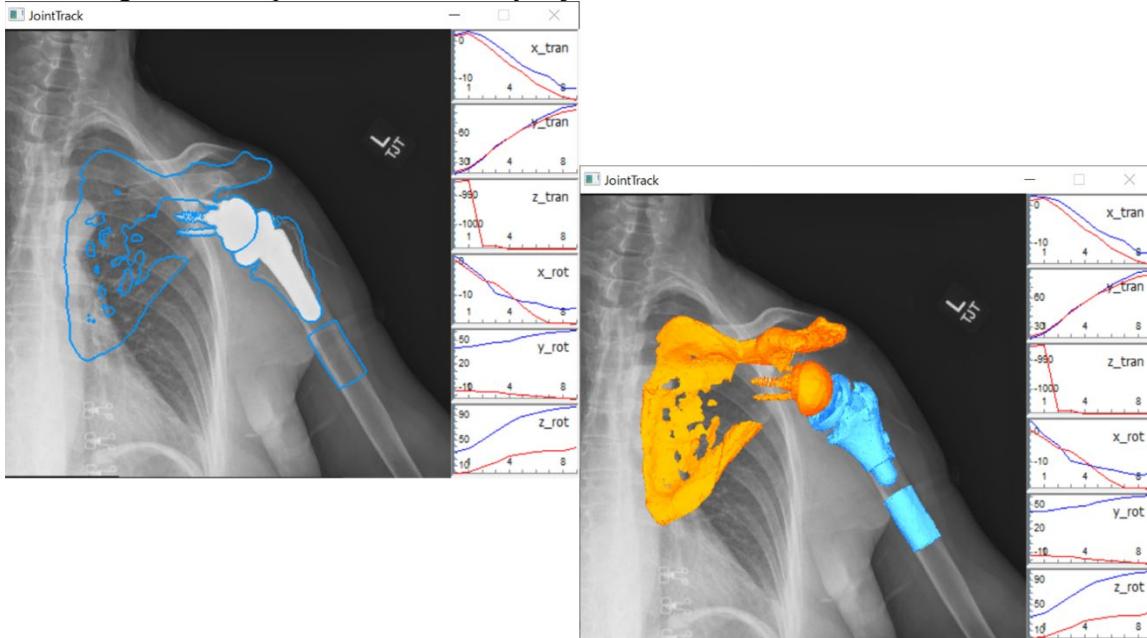
²Department of Orthopaedics and Rehabilitation, University of Florida, Gainesville, Florida

Background: Understanding shoulder kinematics is critical for diagnosis and treatment of shoulder pathologies.

Scapulohumeral rhythm (SHR), defined as the ratio between glenohumeral (GH) and scapulothoracic (ST) contributions to shoulder motion, is a key metric for evaluating shoulder joint function. Current methods of dynamic imaging involving fluoroscopy produces lower image resolution and 3D to 2D registration requires significantly greater time to generate dynamic radiographic data. Dynamic digital radiography (DDR) captures pulsed low-dose radiographs $\sim 1.3x$ of the dose of standard static 2-view shoulder x-rays to create a fluid sequence that enables real-time evaluation of bony movement across range of motion¹. This study aims to 1) validate manual SHR measurements on DDR against an established 3-dimensional (3D) to 2-dimensional (2D) registration technique and 2) establish the most reliable measurement technique by identifying bony landmarks that minimize measurement error.


Methods: 22 patients who underwent reverse shoulder arthroplasty (RSA) and DDR imaging >6 months postoperatively were included. For the manual measurement approach, PACS (Sectra Medical) was used to measure GH and ST angles and calculate SHR angles at rest – 30°, 30° - 60°, 60° - 90°, 90° - maximum abduction, and rest – maximum abduction (Figure 1). For the 3D to 2D registration technique, surface models of the scapula and humerus, with implants, were generated from computed tomography scans using JointTrack¹. The models were iteratively superimposed onto scapular and humeral silhouettes on DDR images at the various abduction angles to calculate SHR (Figure 2). To test reliability of various bony landmarks on manual measurement, two readers performed manual measurements on the same DDR frames for each shoulder at every 10 degrees of shoulder abduction, from 0° to 120°. GH angle was calculated from measurement of the angle between the internal border of the humerus and a vertical line. ST angle was calculated from measurements of the angle between a horizontal line and either the lateral border of the scapula, medial border of the scapula, or scapular spine. Data was compared using descriptive statistics, and inter-rater reliability of the manual measurements was assessed with intra-class correlations (ICC).

Results: For the validity portion of the study, paired two-tail t-tests revealed no significant differences in SHR values across all intervals of humerothoracic abduction, indicating strong consistency between the 3D to 2D registration technique and manual measurement on DDR (Table 1). For the reliability portion of the study, each reader manually measured 105 GH angles and 315 ST angles using each measurement method: 105 using the lateral border of the scapula, 105 using the medial border of the scapula, and 105 using the scapular spine. ICCs were statistically significant ($p < 0.001$) between the two readers for the GH angles and the ST angles using the lateral border, 0.989 and 0.955, respectively. ICCs for the ST angles using the medial border of the scapula and the scapular spine were 0.544 and 0.142, respectively.


Conclusion: SHR measurements obtained manually on DDR images are consistent with those derived from established 3D to 2D model registration in patients who underwent RSA. The lateral border of the scapula is the most reliable skeletal landmark for measurement of ST contribution of SHR, while the chest wall frequently occluded the medial border, and the scapular spine was inconsistently visible due to reliance on ideal patient position. This simple method of SHR measurement on DDR images can be easily integrated in clinical and research workflow where advanced 3D modeling may be too time-consuming. Understanding the contributions of humerus and scapula in shoulder motion, particularly after surgery, is important in informing RSA kinematics and may pave the way for future studies on implant positioning.

1. Hussain ZB, Khawaja SR, Karzon AL, Ahmed AS, Gottschalk MB, Wagner ER. Digital dynamic radiography—a novel diagnostic technique for posterior shoulder instability: a case report. *JSES international*. 2023 Jul 1;7(4):523-6.
2. Jensen AJ, Flood PD, Palm-Vlasak LS, Burton WS, Chevalier A, Rullkoetter PJ, Banks SA. Joint track machine learning: an autonomous method of measuring total knee arthroplasty kinematics from single-plane X-ray images. *The Journal of Arthroplasty*. 2023 Oct 1;38(10):2068-74.

Figure 1. Example of a scapulohumeral rhythm (SHR) measurement on a digital dynamic radiographic (DDR) image at 90 degrees of abduction using the lateral border of the scapula. A line (AB) along the medial border of the humerus is chosen that is equidistant to the cortical width of the humeral shaft (BC). A point along the lateral scapular border is chosen that is equidistant from the inferior glenoid (D) as the starting point for the definition of lateral scapular border (Line 1, EF). Line 3 represents the scapular spine. Line 4 represents the medial scapular border.

Figure 2. Example of 3D position and orientation of the scapula and humerus models determined using model-image registration technique in JointTrack (University of Florida, Gainesville, FL, USA) and projected onto a DDR image; these 3D poses were iteratively adjusted to match their silhouettes with the silhouettes in the DDR image.

Table 1. Comparison of scapulohumeral rhythm (SHR) measurements using a manual method involving the lateral border of the scapula and using the 3D-2D registration method

Intervals of Glenohumeral Abduction	3D-2D Registration	Manual	p-value
Rest - maximum (n= 22)	1.91 (1.86 - 1.95)	1.88 (1.81 - 1.95)	0.823
Rest - 30° (n= 14)	2.97 (2.74 - 3.19)	2.47 (2.15 - 2.78)	0.236
30° - 60° (n= 21)	1.95 (1.89 - 2.00)	1.92 (1.83 - 2.02)	0.898
60° - 90° (n=16)	1.92 (1.81 - 2.03)	1.87 (1.78 - 1.95)	0.673
90° - maximum (n= 11)	1.90 (1.80 - 2.00)	2.24 (2.09 - 2.40)	0.256