

1

2 **Bone or metal to reconstruct the proximal humerus? An analysis of functional outcomes,**
3 **complications and survival between Reverse Allograft Prosthetic Composite and**
4 **Endoprosthesis**

5

6 **Authors:**

7 Zaamin B. Hussain MD, Ed.M. ¹
8 Frank L. Vazquez BS. ¹
9 Musab Gulzar BS. ¹
10 Angelo Marra MPH. ²
11 Sameer R. Khawaja BS. ¹
12 Michael B. Gottschalk, MD ¹
13 Eric R Wagner, MD ¹

14

15 **Affiliations:**

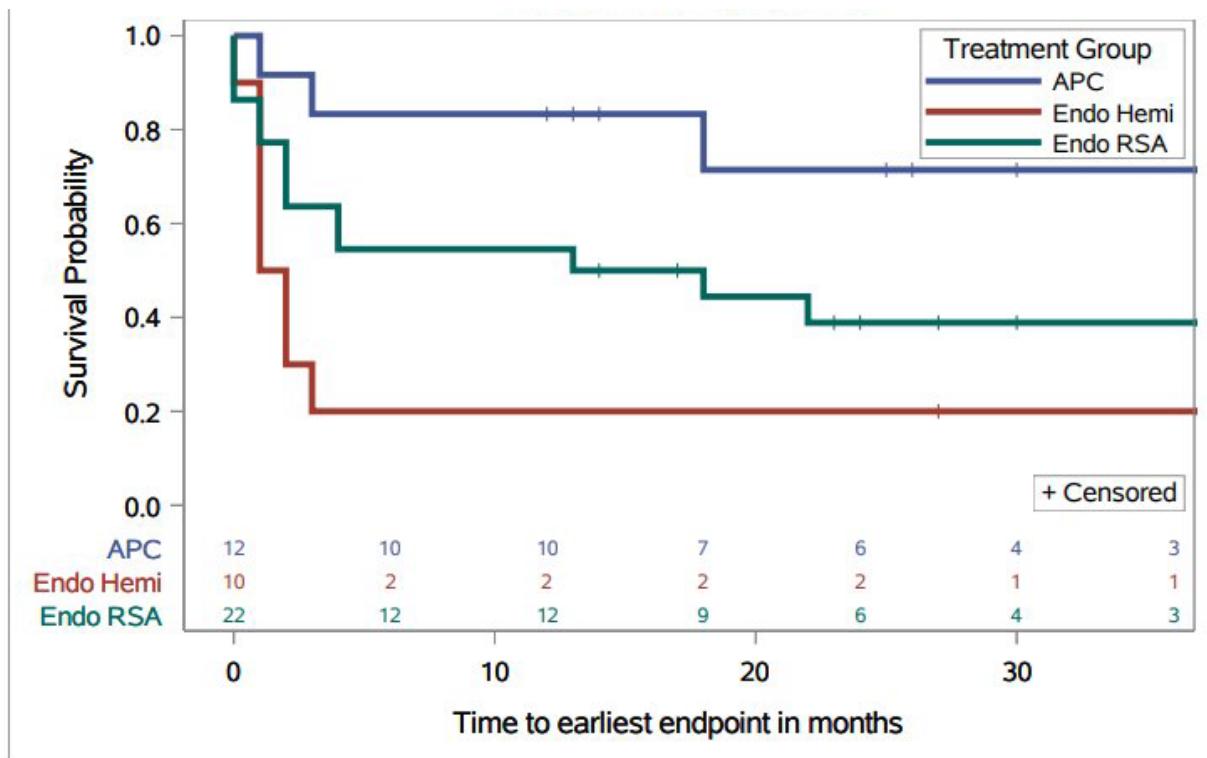
16 1. Department of Orthopaedic Surgery, Emory University School of Medicine, 21 Ortho
17 Lane, Atlanta, GA, 30329
18 2. Winship Cancer Institute of Emory University, 1365 Clifton Rd NE Building C, Atlanta,
19 GA 30322

20
21
22

23 **Introduction:**

24 Proximal humerus bone loss can result from trauma, infection, osteolysis, prior surgery or
25 oncological destruction and is challenging to manage. Reverse allograft prosthetic composite
26 (APC) and endoprostheses, which can comprise hemiarthroplasty or reverse shoulder
27 arthroplasty (RSA) configurations, can both restore stability and function, albeit with a relatively
28 high complication rate. Direct comparisons between the outcomes and complication profiles
29 have been lacking and historically challenging to perform, but are critical to help inform decision
30 making in these complex cases. The purpose of this study was to compare outcomes and
31 complications between reverse-APC and endoprostheses. We hypothesized reverse-APC would
32 be associated with a higher complication-free survival, while endoprostheses would be associated
33 with a higher rate of dislocation given inherent lack of soft tissue stability.

34 **Material and Methods:**


35 This was a retrospective comparative multi-surgeon cohort study of consecutive patients
36 undergoing first-time proximal humerus reconstruction with reverse-APC or endoprostheses,
37 hemiarthroplasty or RSA, for any indication. The primary outcome was complication rate.
38 Secondary outcomes were range of motion, patient reported outcome measures, reoperations and
39 revisions. Minimum follow up was 12 months. Kaplan-Meier survival analysis with log-rank
40 tests were performed.

41 **Results**

42 A total of 44 patients were included: 12 reverse-APC, 22 RSA endoprostheses, and 10 hemi
43 endoprostheses, with a mean (and range) follow up of 26 (12-41), 42 (14-87), and 35 (31-39)
44 months respectively. Demographics and comorbidities were similar between groups. Five
45 reverse-APCs (42%) had complications, and all needed reoperation secondary to fracture,
46 hematoma, symptomatic hardware, glenoid component loosening, and recurrent infection. There
47 were no dislocations. Twelve RSA endoprostheses (55%) had complications, including 4
48 dislocations (18%), 3 of which went on to revision surgery. Ten hemi endoprostheses (100%)
49 had complications, including 5 dislocations (50%), 4 of which went on to revision surgery. The
50 RSA endoprostheses and hemi endoprostheses group had a significantly higher rate of dislocation
51 when compared to the reverse-APC group ($p= 0.014$). Complication-free survival at two years
52 was 75% for reverse-APC, which was higher than the RSA endoprostheses group and hemi
53 endoprostheses group (45% and 20% respectively; $p= 0.018$). With the deltoid detached in severe
54 proximal humerus bone loss, there was a significantly lower complication-free survival (<0.05).
55 ROM and PROMs were similar between groups.

56 **Conclusions:**

57 Reverse-APC and endoprostheses both have a high complication rate, although reverse-APC was
58 associated with a higher complication-free survival, and hemi endoprostheses had a higher
59 dislocation rate. There is a higher risk of complications when the deltoid integrity is
60 compromised.

64
65

Figure 1: Kaplan-Meier survival curve, with complication of any type as the end point.