

1 **Is premorbid scapulohumeral rhythm restored with Anatomic or Reverse Shoulder**
2 **Arthroplasty for cuff-intact osteoarthritis? An in-vivo Dynamic Radiography Study**

4 Zaamin B. Hussain MD, Ed.M¹

5 Sameer R. Khawaja BS¹

6 Musab Gulzar BS¹

7 Jaden Hardrick BS¹

8 Krishna N. Chopra MA¹

9 Anna Gorsky BS¹

10 Michael B. Gottschalk MD¹

11 Eric R. Wagner MD, MS¹

12

13 **Affiliations:**

14 1. Department of Orthopaedic Surgery, Emory University School of Medicine, 21 Ortho
15 Lane, Atlanta, GA, 30329

18 **Introduction**

19 Anatomic total shoulder arthroplasty (aTSA) and reverse shoulder arthroplasty (RSA) are both
20 treatment options for advanced glenohumeral osteoarthritis with an intact rotator cuff, however
21 decision making is controversial, especially among younger active patients. Restoring native
22 shoulder kinematics may be an important consideration for implant longevity and ultimate
23 shoulder function, but *in-vivo* assessment and comparisons has been historically difficult. The
24 purpose of this study was to compare scapulohumeral rhythm (SHR) between aTSA and RSA
25 when performed for patients with cuff-intact osteoarthritis and compare these with preoperative
26 values and normal controls. We hypothesized that TSA would restore SHR to values more typical
27 of a normal shoulder than RSA and demonstrate a more significant improvement compared to
28 preoperative values.

29

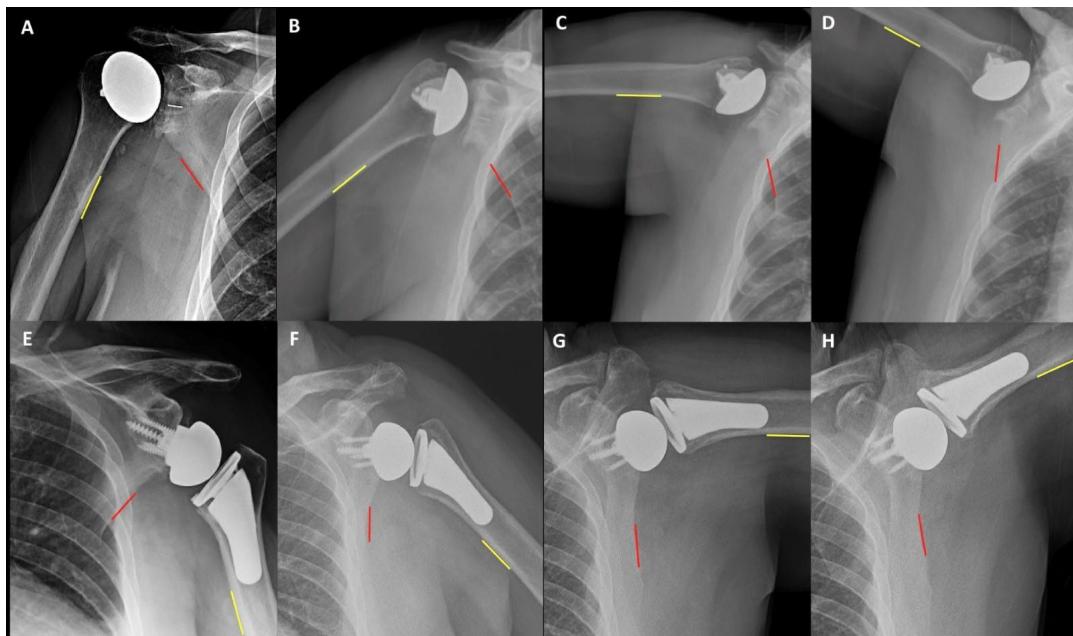
30 **Material and Methods**

31 This study included 71 shoulders that underwent arthroplasty for cuff-intact osteoarthritis, aTSA
32 (n=28) and RSA (n=43), who had dynamic digital radiography (DDR) performed more than 6
33 months postoperatively and compared these to 32 normal controls. SHR was calculated at rest,
34 30°, 60°, 90°, and 120° of humerothoracic abduction. A paired subgroup analysis was performed
35 on 14 aTSA and 14 RSA shoulders with both pre- and postoperative DDR. Data was compared
36 using descriptive statistics, and inter-rater reliability of the manual measurements was assessed
37 with intra-class correlations.

38

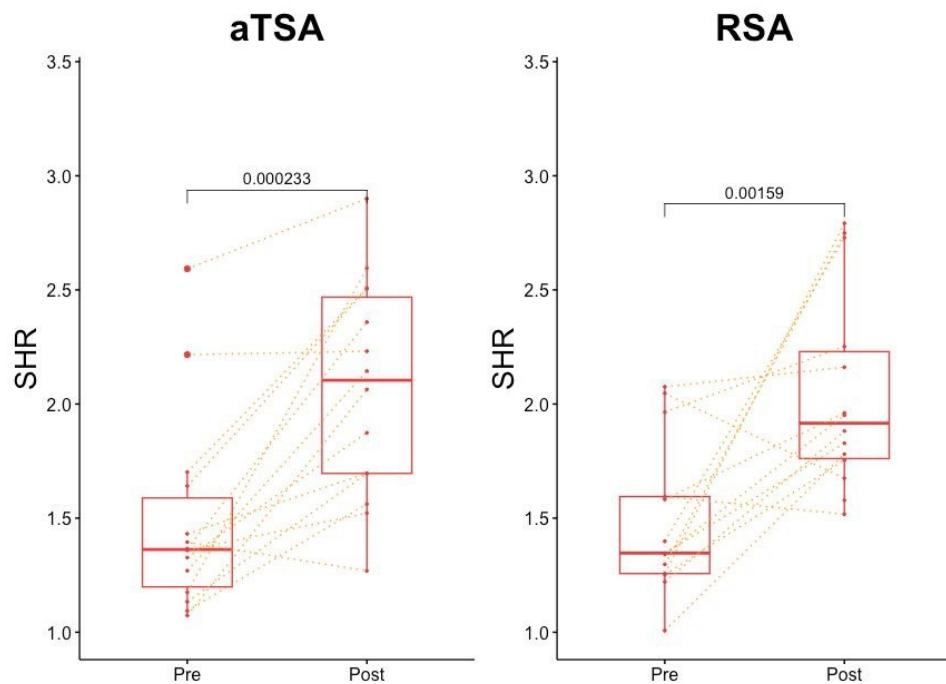
39 **Results**

40 The aTSA cohort had a similar median rest-120° SHR of 2.00 compared to 1.95 for the RSA cohort
41 ($p=0.948$), but both were lower than normal controls with a SHR of 2.38 ($p<0.001$). Subgroup
42 analyses of the aTSA and RSA cohorts show significant improvements in preoperative to
43 postoperative median rest-120° SHR from 1.36 to 2.10 ($p=0.0002$) and 1.34 to 2.04 ($p=0.002$)
44 respectively. The inter-rater reliability was 0.99.


45

46 **Conclusions**

47 Patients who underwent aTSA and RSA for rotator cuff-intact glenohumeral osteoarthritis are
48 associated with lower SHRs than normal asymptomatic patients, however SHRs significantly
49 improved from preoperative levels. There was no difference between postoperative SHRs for RSA
50 and aTSA. aTSA and RSA both partially restore coordination between the glenohumeral and
51 scapulothoracic joints although not to the extent of normal healthy shoulders.


52

53

54
55

56 Figure 1: Radiographs showing humerothoracic abduction in a patient with aTSA (top row)
57 and RSA (bottom row) at rest (A, E), 45° abduction (B, F), 90° abduction (C, G), and 120° abduction (D, H).
58 TSA: anatomic total shoulder arthroplasty; RSA: reverse shoulder arthroplasty. Red line represents lateral border of the scapula,
59 yellow line represents medial border of humerus.

60
61 Figure 2: Subgroup analysis comparing changes pre- and postoperative rest-120° SHR for aTSA (n=14) and RSA
62 (n=14) cohorts. Yellow dotted lines track individual patients change in SHR following surgical intervention.